Acronal® S 400
Polymer Dispersions for Construction

Chemical nature
Aqueous plasticizer-free copolymer dispersion of an acrylic acid ester and styrene

Technical Data

<table>
<thead>
<tr>
<th>Type of dispersion</th>
<th>anionic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solids content</td>
<td>approx. 57 %</td>
</tr>
<tr>
<td>pH value</td>
<td>approx. 7 – 9</td>
</tr>
<tr>
<td>Viscosity</td>
<td>approx. 140 – 200 mPa · s</td>
</tr>
<tr>
<td>Glass transition temperature</td>
<td>approx. – 8 °C</td>
</tr>
<tr>
<td>MFFT</td>
<td>approx. 0 °C</td>
</tr>
</tbody>
</table>

The exact specifications can be found in the specification data sheet.

Application areas
Acronal S 400 has a varied range of uses.

Areas of application include for example:
- basecoats
- high-flexibility tile adhesives
- rigid and flexible waterproofing slurries for sealing in conjunction with tiles and protective surface coatings
- anticorrosion protection
- additive for hydraulic binder systems
- roof coverings

Processing
It is usually not necessary to add any plasticizer, because Acronal S 400 has low film-forming and glass transition temperatures.

If the air voids content increases during processing of Acronal S 400, we suggest defoaming tests with, for example, 0.3 – 0.5 % FoamStar® PB 2706.

To ensure the crack-bridging properties of mineral waterproofing slurries, the polymer/cement ratio should be at least 0.9. If a sag-resistant consistency is required for the processing rheology of the slurry, we recommend the use of polyurethane-based thickeners like, for example, Rheovis® PU 1280.

To speed up hydraulic formulations with a high proportion of polymer, it may be beneficial to add aluminous cement or calcium formate to the dry component.